发布时间:2025-12-10 19:14:23 浏览次数:11
卫星星历TLE格式说明[亲测有效]重要的几个网站1、Space-Trackhttps://www.space-track.org/2、CelesTrakhttps://celestrak.com/3、卫星跟踪https://www.n2yo.com/?s=36287&live=14、卫星计算jsGitHub-shashwatak/satellite-js:ModularsetoffunctionsforSGP4andSDP4propaga…
1、Space-Track https://www.space-track.org/
2、CelesTrak CelesTrak
3、卫星跟踪 https://www.n2yo.com/?s=36287&live=1
4、卫星计算js GitHub – shashwatak/satellite-js: Modular set of functions for SGP4 and SDP4 propagation of TLEs.
5、卫星计算c#
GitHub – 1manprojects/one_Sgp4: C# SGP4 orbit prediction Library
从https://celestrak.com/satcat/tle.php?CATNR=36287查询卫星TLE数据
BEIDOU 3 1 36287U 10001A 21187.60806788 -.00000272 00000-0 00000-0 0 99922 36287 1.9038 47.2796 0005620 82.9429 153.9116 1.00269947 42045 是否还在为Ide开发工具频繁失效而烦恼,来吧关注以下公众号获取最新激活方式。亲测可用!
【正版授权,激活自己账号】:Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】:官方授权 正版激活 自己使用,支持Jetbrains家族下所有IDE…
Table 1. Two-Line Element Set Format Definition, Line 1
| Field | Column | Description |
| 1.1 | 01 | Line Number of Element Data 行号 1 |
| 1.2 | 03-07 | Satellite Number 卫星ID,NORAD_CAT_ID, 36287 |
| 1.3 | 08 | Classification 保密级别 U |
| 1.4 | 10-11 | International Designator (Last two digits of launch year) 发射年份 10 |
| 1.5 | 12-14 | International Designator (Launch number of the year) 发射编号 001 |
| 1.6 | 15-17 | International Designator (Piece of the launch)发射编号 A |
| 1.7 | 19-20 | Epoch Year (Last two digits of year) TLE数据发布时间年份 21 |
| 1.8 | 21-32 | Epoch (Day of the year and fractional portion of the day)TLE数据发布时间第几天 187.60806788 |
| 1.9 | 34-43 | First Time Derivative of the Mean Motion |
| 1.10 | 45-52 | Second Time Derivative of Mean Motion (decimal point assumed) |
| 1.11 | 54-61 | BSTAR drag term (decimal point assumed) |
| 1.12 | 63 | Ephemeris type |
| 1.13 | 65-68 | Element number |
| 1.14 | 69 | Checksum (Modulo 10) (Letters, blanks, periods, plus signs = 0; minus signs = 1) |
Table 2. Two-Line Element Set Format Definition, Line 2
| Field | Column | Description |
| 2.1 | 01 | Line Number of Element Data |
| 2.2 | 03-07 | Satellite Number |
| 2.3 | 09-16 | Inclination [Degrees]轨道面与赤道面夹角 1.9038 |
| 2.4 | 18-25 | Right Ascension of the Ascending Node [Degrees]升交点赤经,升交点赤经是指卫星由南到北穿过地球赤道平面时,与地球赤道平面的交点 经度47.2796 纬度0 |
| 2.5 | 27-33 | Eccentricity (decimal point assumed)轨道偏心率0.0005620 圆形为0 |
| 2.6 | 35-42 | Argument of Perigee [Degrees]近地点幅角 82.9429 |
| 2.7 | 44-51 | Mean Anomaly [Degrees]平近点角 153.9116 |
| 2.8 | 53-63 | Mean Motion [Revs per day]每天环绕地球的圈数 1.00269947 , 周期1,436.12 分钟 |
| 2.9 | 64-68 | Revolution number at epoch [Revs]发射以来飞行的圈数 4204 |
| 2.10 | 69 | Checksum (Modulo 10) |
轨道根数(或称轨道要素或轨道参数)是描述在牛顿运动定律和牛顿万有引力定律的作用下的天体或航天器,在其开普勒轨道上运动时,确定其轨道所必要的六个参数。
传统上使用的轨道根数,是在开普勒和他的开普勒定律之后发展出来的,称为开普勒元素,主要有六个参数:
轨道倾角(i)
升交点黄经(Ω)
离心率(e)
近日点辐角(ω)
半长轴(a)
在指定历元的平近点角(Mo)
(或是近日点通过时间(To))
为了唯一的确定一个卫星的运行轨道,我们需要6个参数,:
1. 轨道半长轴,是椭圆长轴的一半。对于圆,也就是半径
2. 轨道偏心率,也就是椭圆两焦点的距离和长轴比值。对于圆,它就是0.
这两个要素决定了轨道的形状
3. 轨道倾角,这个是轨道平面和地球赤道平面的夹角。对于位于赤道上空的同步静止卫星来说,倾角就是0。
4. 升交点赤经:卫星从南半球运行到北半球时穿过赤道的那一点叫升交点。这个点和春分点对于地心的张角称为升交点赤经。
这两个量决定了卫星轨道平面在空间的位置。
5. 近地点幅角:这是近地点和升交点对地心的张角。
前面虽然决定了轨道平面在空间的位置,但是轨道本身在轨道平面里还可以转动。而这个值则确定了轨道在轨道平面里的位置。
6. 过近地点时刻,这个的意义很显然了。卫星位置随时间的变化需要一个初值。
GitHub – shashwatak/satellite-js: Modular set of functions for SGP4 and SDP4 propagation of TLEs.
npm install satellite.js // Sample TLEvar tleLine1 = '1 25544U 98067A 19156.50900463 .00003075 00000-0 59442-4 0 9992', tleLine2 = '2 25544 51.6433 59.2583 0008217 16.4489 347.6017 15.51174618173442'; // Initialize a satellite recordvar satrec = satellite.twoline2satrec(tleLine1, tleLine2);// Propagate satellite using time since epoch (in minutes).var positionAndVelocity = satellite.sgp4(satrec, timeSinceTleEpochMinutes);// Or you can use a JavaScript Datevar positionAndVelocity = satellite.propagate(satrec, new Date());// The position_velocity result is a key-value pair of ECI coordinates.// These are the base results from which all other coordinates are derived.var positionEci = positionAndVelocity.position, velocityEci = positionAndVelocity.velocity;// Set the Observer at 122.03 West by 36.96 North, in RADIANSvar observerGd = { longitude: satellite.degreesToRadians(-122.0308), latitude: satellite.degreesToRadians(36.9613422), height: 0.370};// You will need GMST for some of the coordinate transforms.// http://en.wikipedia.org/wiki/Sidereal_time#Definitionvar gmst = satellite.gstime(new Date());// You can get ECF, Geodetic, Look Angles, and Doppler Factor.var positionEcf = satellite.eciToEcf(positionEci, gmst), observerEcf = satellite.geodeticToEcf(observerGd), positionGd = satellite.eciToGeodetic(positionEci, gmst), lookAngles = satellite.ecfToLookAngles(observerGd, positionEcf), dopplerFactor = satellite.dopplerFactor(observerCoordsEcf, positionEcf, velocityEcf);// The coordinates are all stored in key-value pairs.// ECI and ECF are accessed by `x`, `y`, `z` properties.var satelliteX = positionEci.x, satelliteY = positionEci.y, satelliteZ = positionEci.z;// Look Angles may be accessed by `azimuth`, `elevation`, `range_sat` properties.var azimuth = lookAngles.azimuth, elevation = lookAngles.elevation, rangeSat = lookAngles.rangeSat;// Geodetic coords are accessed via `longitude`, `latitude`, `height`.var longitude = positionGd.longitude, latitude = positionGd.latitude, height = positionGd.height;// Convert the RADIANS to DEGREES.var longitudeDeg = satellite.degreesLong(longitude), latitudeDeg = satellite.degreesLat(latitude); 1、eci
ECI,earth centered inertial 惯性坐标系
坐标原点取在地心,X轴指向春分点,Z轴指向北极,Y轴与前者构成右手系。该系不与地球一同转动,因此可以应用牛顿定律。
2、ecef
ECEF,earth centered eath fixed 地固坐标系
该坐标系以地球质心为原点,Z轴向北沿地球自转轴方向,X轴指向经纬度的(0,0)位置,右手系Y轴指向90度经线。该系与地球一同转动。
地球坐标系固定在地球上而随地球一起在空间做公转和自转运动,因此地球上任一固定点在地球坐标系的坐标就不会由于地球旋转而变化。地心地固直角坐标系和大地坐标系都属于这种坐标系。