发布时间:2025-12-10 06:06:43 浏览次数:1
靠前类换元积分法的公式如下:
若对于函数f(x),存在一个可导函数g(x),满足f(x) = h(g(x))g'(x),其中h(t)为可导函数,则有∫f(x)dx = ∫h(g(x))g'(x)dx = H(g(x)) + C,其中C为常数,H(t)为h(t)的一个原函数。
第二类换元积分法的公式如下:
若对于函数f(x),存在一个可导函数g(x),满足f(x)中至少含有一个因式为g(x),则有∫f(x)dx = ∫f(g(t))g'(t)dt,其中x = g(t)。
特殊换元积分法的公式如下:
常用的特殊换元积分法包括三角换元法、指数换元法、倒代换法、多功能代换法等。
设x=φ(t)是单调的,可导的函数,并且φ'(t)≠0,又设f[φ(t)]φ'(t)具有原函数,则有换元公式∫f(x)dx={∫f[φ(t)]φ'(t)dt} (t=φ^(-1)(x))。
定理(1)设f(u)具有原函数,u=φ(x)可导,则有换元公式∫f[φ(x)]φ'(x)dx=[∫f(u)du] (u=φ(x));
定理(2)设x=φ(t)是单调的,可导的函数,并且φ'(t)≠0.又设f[φ(t)]φ'(t)具有原函数,则有换元公式∫f(x)dx={∫f[φ(t)]φ'(t)dt} (t=φ^(-1)(x))。